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Abstract

In terms of the tensor analysis technique, the relative N–S equations and the energy equation in a rotating helical

coordinate system are presented in this paper. Convective heat transfer in the rotating helical pipes with circular cross-

section is investigated employing theoretical and numerical method. A perturbation solution up to the secondary order

is obtained for a small Dean number. Variations of the temperature distribution with the force ratio (the ratio of the

Coriolis force to the centrifugal force), the curvature and the torsion are discussed in detail. Present studies also show

the natures of the Nusselt number, as well as the effects of the force ratio, the curvature, and the torsion. This study

explores many new characteristics of convective heat transfer in the rotating helical pipes and covers wide ranges of

parameters.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the initial work by Dean [1,2], the flow and heat

transfer through a curved duct has attracted more and

more attention not only because of its practical impor-

tance in various industrial applications, but also because

of physically interesting phenomena under the action of

centrifugal force caused by curvature of the pipe. Ex-

cellent surveys have been given by [3–6].

When a pipe rotates about an axis normal to a plane

including the pipe, the Coriolis force could also con-

tribute to the generation of secondary flow and the heat

transfer becomes more complicated. Such rotating pipes

have extensive applications, such as the cooling systems

for conductors of electric generator motors, gas tur-

bines, separation processes. The nature of the flow and

heat transfer in rotating pipes is affected by the inter-
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action of the imposed pressure-driven axial flow, the

system rotation and the geometrical structure of the

pipe. This interaction causes the fluid flow and heat

transfer performance in a rotating pipe to be drastically

different from those in a stationary case.

As an interesting problem, the combined effects of

curvature and rotation, which are relevant to the flow in

rotating curved pipes, were examined detailedly by nu-

merous researchers [7–19]. Although the flow and heat

transfer in the rotating curved pipes have been well

studied, the helical pipes with rotation still receive rela-

tively scant attention. To enhance the heat and mass

transfer, the helical pipes with a finite pitch were used

extensively in various industrial applications. Important

characteristics include, in addition to high heat and mass

transfer rate, enhanced cross-sectional mixing, low axial

dispersion and an extended laminar flow. The previous

works on the helical pipes were mainly focused on the

stationary case, such as [20–24]. By the author�s
knowledge, no paper was published in the open litera-

ture for both theoretically and numerically studying the

convective heat transfer in a rotating helical pipe.
ed.
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Fig. 1. The rotating helical and the rotating helical coordinate

system.

Nomenclature

d diameter of the helical pipe

er�� , ez, ew unit base vectors of the cylindrical co-

ordinate system

Dn Dean number, Dn ¼ Rej1=2

F ratio of the Coriolis force to the centrifugal

force, F ¼ 1=jRo
K pitch of the helical pipe

Nu Nusselt number

p pressure

P modified pressure, P ¼ p�X2qðR� r coshÞ2=
2�X2qðr sinb sinhÞ2=2

Pr Prandtl number, Pr ¼ t=a
R curvature radius

Re Reynolds number, Re ¼ wmd=t
Ro Rossby number, Ro ¼ wm=Xd cos b
r radial direction coordinates

s axial direction coordinates

T;N ;B tangent, normal and binormal unit vector of

the helix

T , Tw temperature of fluid and the wall

u, v, w physical velocity components

V vector of velocity

wm mean value of axial velocity on the cross-

section

Greek symbols

a thermal diffusivity

b the slope between the helix and the hori-

zontal plane

t kinematic viscosity of fluid

j curvature

s torsion

X rotating angular velocity

h angular coordinate

q density of the fluid

w stream function

Subscripts and superscripts

* dimensionless variable

max maximum value

– average value
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Our emphasis in this paper is placed on the coupled

effects of curvature, torsion and rotation on the

convective heat transfer. It is assumed that the fluid flow

is steady, laminar, hydrodynamically and thermally fully

developed, and, the wall heat flux and the peripheral

wall temperature are both uniform. The fully developed

convective heat transfer in a rotating helical pipe is ex-

amined by employing perturbation method and finite

volume method. A wide range of parameters is covered

in this work. Three important aspects of convective heat

transfer will be studied in detail: temperature distribu-

tion, the distributions of peripheral Nusselt number and

Nusselt number ratio.
2. The governing equations

Fig. 1 shows the rotating helical and the rotating

helical coordinate system and the helix s, which is the

centerline of the helical pipe, in a coordinate system

ðr��;w; zÞ. R is the radius of the helix and 2pK is the

pitch. er�� , ez, ew are the unit base vectors of the cylin-

drical coordinate system. Then ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ K2

p
dh and

the curvature j and torsion s are obtained as

j ¼ R
R2 þ K2

; s ¼ K
R2 þ K2

The radius vector of an arbitrary point o along the

helix is expressed as
ro ¼ Rer�� ðwÞ þ Khez

The tangent unit vector T, normal unit vector N , and

the binormal unit vector B of the helix are

T ¼ r0o; N ¼ 1

j
r00o; B ¼ T �N

The Frenet formulas are

T 0 ¼ jN ; N 0 ¼ sB � jT; B0 ¼ �sN

And T, N , and B are given as

TðsÞ ¼ cos bewðsÞ þ sin beZ
NðsÞ ¼ �er�� ðsÞ
BðsÞ ¼ � sin bewðsÞ þ cosbez
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where

cos b ¼ jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ s2

p ; sinb ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ s2

p

A polar coordinate system ðr; hÞ in plane ðN ;BÞ is

defined, and radius vector rc at an arbitrary point c is

rcðsÞ ¼ roðsÞ þ r cos hNðsÞ þ r sin hBðsÞ

Assume the helix s is rotating around OZ axial with a

constant angular velocity X, or

X ¼ Xez

Accordingly, the Coriolis acceleration and the relative

acceleration are

ac ¼ 2X� V

¼ ð2Xw cos b� 2XVB sinbÞN � 2XUN cos bT

þ 2XUN sinbB

ae ¼
dX
dt

� rc þX� ðX� rcÞ

¼ X2ðR� r cos hÞN þ 1

2
X2r sin 2b sin hT

� X2r sin h sin2 bB

where UN ¼ u cos h� v sin h, VB ¼ u sin hþ v cos h, u, v,
w are the physical velocity components of the radial,

tangential and axial directions, respectively.

In terms of tensor analysis technique, assuming an

incompressible, steady, and fully developed flow, the

governing equations in ðs; r; hÞ (see Fig. 1) are
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sin h� jM
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sin h
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Introduce the following dimensionless variables to

obtain dimensionless equations,

s� ¼ s
d
; r� ¼ r

d
; w� ¼ w

wm

; u� ¼ ud
t

v� ¼ vd
t
; P � ¼ Pd2

qt2
; j� ¼ jd; Dn ¼ Re

ffiffiffiffiffi
j�

p

Re ¼ wmd
t

; s� ¼ sd; T � ¼ ðTw � T Þ
PrdoT=os

; Pr ¼ t
a

X� ¼ Xd2

t
; Ro ¼ wm

Xd cos b
; F ¼ 1

jRo
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When X� > 0, the rotation has the same direction

with the axial velocity (co-rotation), X� < 0 indicates the

rotation and the axial velocity are in the opposite di-

rections (counter-rotation).

The secondary stream function w is given as

1

r
ow
oh

¼ Mu; � ow
or

¼ Mv� Gnrw ð6Þ

The boundary conditions:

At r ¼ 1=2; u ¼ v ¼ w ¼ T ¼ 0;
ow
or

¼ 0 ð7Þ

3. Perturbation solutions for small Dean number

For a small Dean number, Eqs. (1)–(5) can be solved

by the perturbation method. Assuming j
2
¼ e � 1,

s
2
¼ ke � 1. Both of the curvature j and torsion s then

can be used as perturbation parameters. The axial

velocity w, the secondary stream function w and the

temperature can be expressed as follows:

Rew ¼ 2ðŵw0ðr̂r; hÞ þ eŵw1ðr̂r; hÞ þ e2ŵw2ðr̂r; hÞ þ � � �Þ

w ¼ eŵw1ðr̂r; hÞ þ e2ŵw2ðr̂r; hÞ þ � � �

T ¼ T̂T0ðr̂r; hÞ þ eT̂T1ðr̂r; hÞ þ e2T̂T2ðr̂r; hÞ þ � � �

ð8Þ

where r̂r ¼ 2r. Substituting Eqs. (6) and (8) into the

governing equations (1)–(5), and collecting the coeffi-

cient of the same order of e, one can obtain the three sets

of partial differential equations. Solve the equations with

the boundary conditions (7), one can get the second

order solutions of the flow in a rotating helical circular

pipe as
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r̂r3ĜGX̂X� 1

1152
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ĜG2r̂r2X̂X

� 1

2880
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Table 1

Grid test (Dn ¼ 100, j ¼ 0:1, s ¼ 0:1)

F Grid kRe Tmax Nu=Nus

0 12· 32 22.2092 17.6438 1.6176

22· 42 22.0528 18.3333 1.5793

22· 62 22.0544 18.3352 1.5792

32· 62 22.0559 18.3899 1.5753

5 12· 32 31.5932 13.9567 2.3349

22· 42 31.0669 14.6506 2.1572

32· 62 31.0657 14.6581 2.1558

32· 62 31.0518 14.6789 2.1544

)5 12· 32 28.7410 15.8314 2.0435

22· 42 28.3097 16.1975 1.9431

22· 62 28.3105 16.1999 1.9411

32· 62 28.2593 16.2144 1.9516
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r̂r7ĜG2X̂X� 1

73728
r̂r5ĜG2X̂X� 1

737280
r̂r9ĜG3Pr
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r̂r9ĜG2X̂XPr

þ 1

36864
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Fig. 2. Comparison with available results ðj ¼ 0:02Þ.
4. Numerical procedure

In present work, the finite-volume method is chosen

to solve the governing equations. The power-law scheme

is adopted to discretize the convection term and the

SIMPLE scheme is employed to deal with the problem

of velocity–pressure coupling. The mesh system is stag-

gered and an alternating direction line by line iterative

method (ADI) with block correction technique is used to

solve the discretized equations. The description of the

numerical implementation can be found, for example

from Patankar�s work [25].

For a given Dn, an iterative procedure should be

applied to obtain a specific value of axial pressure gra-

dient �oP=os. A value of �oP=os is first guessed and the

obtained flow rate is compared with the given flow rate.

If the former is smaller (or larger) than the latter, we

should increase (or decrease) �oP=os until the two flow

rates almost reach a same value. The convergence cri-

terion is jð/nþ1 � /nÞ=/nj < 10�7.

A uniform grid mesh system is employed in the whole

cross-section because the boundary layers exist not only
near the wall but also at the dividing boundary of the

secondary flow. Four pairs of grid sizes ðr � h ¼ M � NÞ
were used to check the grid dependence, and associated

comparisons are shown in the Table 1. 22 · 42 is chosen

as reasonable grid size for the flow in rotating helical

circular pipes. For a high Dean number ðDnP 500Þ,
32· 62 is employed to satisfy precision.

For the rotating cases, comparisons are made with

the available results [12]. The Nusselt number ratio ob-

tained by present numerical method as well as available

results are shown in Fig. 2. For the small Dean number

ðDn ¼ 100Þ, the numerical curves almost has very good

agreement with that of Ishigaki [12], but for a large

Dean number ðDn ¼ 500Þ, their differences become sig-

nificant, perhaps Ishigaki [12] did not take the effect of

high order terms of curvature into account. Meanwhile,

some comparisons between the numerical solution and

the perturbation solution are also made and two solu-

tions confirm each other very well.
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5. Results and discussions

In a rotating helical pipe, the presence of centrifugal

and Coriolis forces cause two kinds of secondary flows in

the cross-section perpendicular to the axial velocity. The

interaction of these two secondary flows will make the

heat transfer performance drastically different from those

in a stationary case. Our work focuses on the convective

heat transfer in a rotating helical pipe and the results

shown in the paperwill be confined to the case of Pr ¼ 0:7.

5.1. Temperature distribution from the perturbation

solutions

Fig. 3 presents the distributions of different order

solutions of temperature. In the temperature contours,

solid, dotted and dot-dash lines indicate positive, zero,

and negative values respectively. Eq. (10b) indicates that

the torsion has no effect on T̂T1j and as is seen in Fig.

3(a), the distributions of T̂T1j is symmetrical to the center

line. For the co-rotation ðF ¼ 1Þ and stationary case

ðF ¼ 0Þ, T̂T1j has a positive value in the semicircle near

the outer wall and a negative value near the inner bend,

obviously, the maximum temperature is pushed to outer

bend. When F ¼ �1:2, a negative value region appears

in the outer half while a positive value region appears

near the inner wall. And the maximum of T̂T1j becomes
Fig. 3. Temperature distribution of T̂T1j, T̂T2j2 and T (Dn ¼ 15, j ¼
(c) T , T ¼ T̂T0 þ T̂T1jþ T̂T2j2).
small, so the effect of T̂T1j on temperature becomes

weakest. As F decreases to )2, the distribution of T̂T1j
behaves almost in the same structure as those in the case

of F ¼ 0, but a reverse way.

The torsion affects the distribution of T̂T2j2, as seen in

Fig. 3(b). For F ¼ 1 and 0, the contours of T̂T2j2 are

highly asymmetrical with a negative value in the bottom

region and a positive value in the upper region. These

distributions will shift the maximums of the temperature

to the upper half. But for the counter-rotation F ¼ �2,

the contour of T̂T2j2 behaves the reverse way and when

F ¼ �1:2, the effect of T̂T2j2 on T can almost be ne-

glected. By combining T̂T0, T̂T1j and T̂T2j2, Fig. 3(c) shows

the variations of typical temperature distribution with F .
As F decreases from 1 to )2, the maximum of temper-

ature shifts form the upper-outer half to the lower-inner

half and it seems to rotate clockwise.

5.2. Temperature distribution from the numerical proce-

dure

Fig. 4 shows the variations of temperature distribu-

tions with F for a large Dn number. In this case, the effect

of centrifugal force on the temperature distribution be-

comes more evident and the temperature distribution is

not similar to concentric circles. For the co-rotation

ðF ¼ 1Þ, the high temperature is pushed to the outer wall.
0:05, s ¼ 0:1, T̂T 0 ¼ ðmaximum;minimumÞ; (a) T̂T1j, (b) T̂T2j2,



Fig. 4. Variations of temperature distributions with F (Dn ¼ 250, j ¼ 0:1, s ¼ 0:1).
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For the counter-rotation ðF < 0Þ, the opposite Coriolis

force will dominate the temperature distribution gradu-

ally as F decreases from 0 to )2. When F ¼ �2, the

temperature distribution dominated by the reversal Co-

riolis force can be recognized. Fig. 4 also indicates that

for a large Dn number, Only when the Corioslis force

almost has the same magnitude with the centrifugal force

but in the opposite direction ðF � �1Þ, the effect of

torsion on temperature is remarkable.

Fig. 5 shows the variations of Tmax with F . The figure
indicates that when F � �1:2, Tmax reaches its maximum

values for different values of Dn, which means the

maximum temperature difference between flow and wall

becomes largest in this point. These phenomena can be

well understood if we realise that when F � �1:2, the
Fig. 5. Variations of Tmax with F for different values of Dn
(j ¼ 0:1, s ¼ 0:1).
secondary flows caused by the centrifugal and Coriolis

forces almost counteract with each other and the mixing

by secondary flow becomes weakest. For a given F , the
larger Dn number, the larger Tmax.

Most of the existing studies on curved rotating pipe

are almost on the small curvature and torsion, such as

Ishigaki [15,16] and Zhang and Zhang [24]. In engi-

neering applications, a large curvature is often encoun-

tered and it is important and interesting to study the

effects of curvature on the flow. Fig. 6 provides the

variations of the maximum temperature difference Tmax

with j for different values of F . As j increases, the

secondary flow is intensified by the centrifugal force and

the temperature difference is reduced because of the re-

markable mixing by secondary flow. Fig. 7 shows the
Fig. 6. Variations of Tmax with j for different values of F
(Dn ¼ 250, s ¼ 0).



Fig. 7. Variations of Tmax with s for different values of F
(Dn ¼ 250, k ¼ 0:1).
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variations of Tmax with s. The effect of torsion on Tmax-

curves changes with F . For F ¼ 0 and 1, Tmax first de-
Fig. 8. Nusselt number distributions along the wall.
creases and then increases with increasing torsion while

for F ¼ �2, Tmax increases with increasing torsion all

along. When F ¼ �1:2, increasing torsion almost has no

effect on Tmax.

5.3. Nusselt number

The non-dimensional peripheral Nusselt is defined as

Nu ¼ 2

Tb

oT
or

� �
r¼0:5

ð11Þ

where Tb is the bulk temperature, Tb ¼
R 0:5

0

R 2p
0

Twr �
drdh=

R 0:5

0

R 2p
0

wrdrdh.
The variations of Nu along the wall circumference are

shown by polar diagrams in Fig. 8. As j increases, the

distribution of Nu is distorted gradually and the Nu-
curves seems to be pushed to the inner bend and the

outer bend at the same time. When j ¼ 1:5, for

F ¼ �1:2 and )2, two Nu maximum appears. As s in-

creases, the Nu-curve rotates clockwise for F ¼ 1 and

�2. But for F ¼ �1:2, increasing s has little influence on
(a) Dn ¼ 250, s ¼ 0 and (b) Dn ¼ 100, j ¼ 0:1.



Fig. 10. Variation of Nusselt number ratio with Dn (j ¼ 0:1,
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Nu distribution. Considering Nu is proportional to the

temperature jumped from wall, all the above variations

can be explained by the distributions of the temperature

distribution.

By integrating Eq. (11) along the peripheral of pipe,

the expression of average Nusselt number for the small

parameter can also be obtained as

Nu ¼ 1

2p

Z 2p

0

2

Tb

oT
or

� �
r¼1

dh

¼ 5

64

��
ĜG� 3

20480
ĜG2X̂X� 1

2304
ĜGX̂X2

� 1

23040
ĜG2X̂XPr � 11

884736
ĜG3 � 29

4423680
ĜG3Pr

� 1

60660288
ĜG3X̂X2 � 37

7927234560
ĜG4X̂X

� 1541

428070662400
ĜG5

�
þ 1

4
ĜG
��

Tb ð12Þ

Fig. 9 shows the variation of Nu=Nus with F . In the

Fig. 9(a), the perturbation results agree well with the
Fig. 9. Variation of Nusselt number ratio with F ((a) j ¼ 0:05,

s ¼ 0:1, (b) j ¼ 0:1, s ¼ 0:1).
numerical results when Dn ¼ 10 and 15. But for

Dn ¼ 20, the difference between perturbation results and
s ¼ 0:1).

Fig. 11. Variation of Nusselt number ratio with j (Dn ¼ 250,

s ¼ 0).
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the numerical results becomes more obvious as F in-

creases. All of the Nu=Nus-curves reach their minimum

values about 1 when F � �1:2, which indicates the

Nusselt number in this point almost has the same value

with straight pipe. When F > �1:2, Nu=Nus increases as
F increases, when F < �1:2, Nu=Nus decreases as F in-

creases. The similar variations also can be found for a

large Dn, see in Fig. 9(b). Fig. 10 shows some numerical

results for a wide range of Dn number. For all the value

of F , the Nu=Nus-curves increase as Dn increases.

The variation of Nu=Nus with j is shown in Fig. 11.

For the stationary case ðF ¼ 0Þ, the Nu=Nus-curves first
increase with increasing j until at a certain value of j
and then decrease as j increases. For the co-rotation

(F ¼ 1, 0.5), the Nu=Nus-curves decrease as j increases.

However, for the counter-rotation, the variation of

Nu=Nus-curves depends on F . For F ¼ �1:2, the Nu=
Nus-curves increase with increasing j while for F ¼ �2

and �3, the Nu=Nus-curves decrease with increasing j.
Fig. 12 presents the variation of Nu=Nus with s. For

the co-rotation cases (F ¼ 1, 0.5), Nu=Nus slightly in-

creases with increasing s and reach its maximum values
Fig. 12. Variation of Nusselt number ratio with s (Dn ¼
100; s ¼ 0:1).
at s � 0:5, then it decreases obviously as s increases. For
the counter-rotation, all of the Nu=Nus-curves almost

decrease as s decreases. Fig. 12 also indicates that when

F � �1:2, increasing s has little effect on Nu=Nus and

Nu=Nus almost keeps constant all the way with increas-

ing s.
6. Conclusions

The convective heat transfer in the rotating helical

pipes with arbitrary curvature and torsion are investi-

gated by perturbation and finite volume methods. The

coupled effects of rotation, curvature, and torsion on the

convective heat transfer in the rotating helical pipes are

first examined in details. The major conclusions are

drawn as follows:

The effect of torsion on the temperature distributions

occurs only in the second-order solution. For counter-

rotation, increasing curvature can divide the high region

into two regions. Whether the high temperature is near

the inner bend or the outer bend depends on the value of

F . Increasing curvature and torsion will also affect the

convective heat transfer in rotating helical pipes signifi-

cantly. Only there are effects of the curvature or the

rotation on the temperature distribution, the effects of

torsion can be recognized.

The distribution of Nu along the wall is dependent on

the distribution of temperature. The Nusselt number

ratio increases for co-rotation with F increasing, but for

counter-rotation, first decreases and reaches its mini-

mum about 1 at F � �1. Whether increasing s or j in-

creases the heat transfer ratio or decreases it depends on

the value of F .
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